

Denitrifying Bioreactors:

A Synthesis of Removal Rates, Controls and Utility

Louis Schipper
University of Waikato
Hamilton, New Zealand

Workshop at the 2012 Land Grant and Sea Grant National Water Conference May 23, 2012

Outline

- What the forms of bioreactors?
- Nitrate removal rates
- Controls on nitrate removal
 - Temperature
 - Nitrate concentration
 - Carbon source
- Longevity and costs
- Adverse effects?
- Conclude and gaps

The principle

Nitrate Nitrogen gas

- By denitrifying microbes
- Requires carbon source for energy
- Absence of oxygen

 Common in water saturated environments such as wetlands and riparian zones but less so many agricultural ecosystems

Need a carbon source

And just add water ... to make anaerobic Add nitrate to promote denitrification

Simplest form – denitrification bed

a.

Woodchips/sawdust/corn cobs

Wastewater

Harold Leverenz, UC Davis

Can be placed in different environments...

a.

b.

C.

d.

Tile Drainage

Wood chip bioreactor on a tile line draining 50 acres. Mark David

Iowa soybean growers – tile drains

Photo Stewart Cameron

Streams

Tikitere a bioreactor coupled to a stream

Will Robertson, Canada

Intercepting a stream entering Lake Rotoehu, New Zealand.

Or restructured to intercept groundwater: Denitrification walls

e.

Nitrogen
Gases
Stream

Rates of N removal

- Geometric mean of 3.4 g m⁻³ d⁻¹
- Range probably due to range of nitrate concentrations, ages carbon stocks, and temperature

Adapted from Schipper et al 2010

Subsequent rates: N non-limiting

Author	Bed/wall	Size (m3)	Rate (g/m3/d)
Warneke et al 2011 Ecol Eng 37: 511-522	Bed NZ woodchip	1320	4.6 – 11.2 Mean = 7.6
Christianson et al 2011 Ag Water Manage 99:85-92	Bed NZ woodchip	0.5	6.7
Tanner et al 2012 Ecol Eng 42: 112-123	Bed, NZ woodchip	1.1	3 – 5.1
Schmidt and Clark 2012 Ecol Eng 42: 203-211	Wall, Florida	168	4.9 – 5.5
Average			5.9

Factors controlling nitrate removal rates and denitrification

- Temperature
- Nitrate
- Carbon
- Absence of oxygen which inhibits denitrification

But not microorganisms, which seem to be self-seeding

Temperature

Other factors non-limiting in field studies

Roughly, as temperature increases by 10 °C rate increases 2 fold

Nitrate concentration

Fig. 3. Relationship of NO_3^- mass removal rate (area-normalized) and effluent temperature. Linear regression line (y=246+54x, r2 = 0.39) does not include sampling events with low stream NO_3^- values (<1mg N L⁻¹). Elgood et al. 2010 Ecological Engineering 36 (2010) 1575–1580

Nitrate concentration and nitrate removal

Reported Km vary between 0.2 and 6 mg N/L

Very poorly quantified

Carbon source

- Sawdust/woodchip different sizes
- Hardwood vs softwood
- Corn/Maize cobs
- Others newspaper

 Many tested in lab based mesocosms (<1m³) and relatively short term

Different carbon compounds

Cameron and Schipper 2010

Particle size

Carbon compounds

- What do you have at hand? Cost?
- How much nitrate will it remove?
- How long will it last?

Lifetime - woodchips

- Running in field
 - 15 years, Canada (Robertson et al 2008)
 - 14 years, New Zealand (Long et al 2011)
 - 9 years, lowa (Moorman et al 2010)
- Estimated by extrapolation
 - Busselton, Western Australia estimated 20 year (Fahrner 2002)
 - Auckland, New Zealand lifetime of 39 years (Warneke et al 2011)
 - Cambridge, NZ half-life of carbon was 11 years
 (Long et al 2011)

Costs

- Depends on access to wood chips or similar and cost of creating hole, lining and flow structures and assumed life time
 - Jaynes in Schipper et al (2010) estimated cost of nitrate removal of about \$2-15 (USD) per kg N
 - Schmidt and Clark (2012) estimated \$3.85 (USD)
 per kg N removed assuming 20 year lifetime
 - There are likely now many more costing available and we probably need to consolidate these

Adverse effects and mitigation

- Greenhouse gases N₂O, CH₄, CO₂
- Dissolved carbon leaving bed
- H₂S possible health hazard
- Methyl mercury

Conclusions and gaps?

- Rates around 5-7 g N m⁻³ d⁻¹ between 10 and 15°C but really depends on temperature?
 - Need to quantify temperature / removal rate relationship
- But there is also a nitrate dependency
 - What is the Km value? $^{\sim}1$ to 4 mg N L⁻¹?
 - Needed for nitrate removal estimate but also to avoid adverse effects N₂O and perhaps methyl mercury
- Wood chips most commonly used, are other carbon compounds worth it for higher rates?
 - Trade-off with longevity
 - Field trials needed

Conclusions and gaps?

- Longevity is decadal when using wood chips
 - Need to determine decline in performance with time
- Costs need to be summarised better
- As always need to have hydraulic connections well worked out