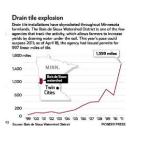
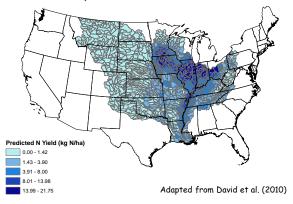
Managing Denitrification in Constructed Wetlands


Mark B. David, Lowell E. Gentry, Tyler A. Groh, Richard A. Cooke, David A. Kovacic, and George F. Czapar University of Illinois at Urbana-Champaign


Fraction of county tile drained

More tile drainage every year

January to June Nitrate-N Yield

What are constructed wetlands?

- intercept tile line or water flow path with small constructed wetland (0.5 to several ha)
 - bulldoze berm
- water is retained for hours to days
- allows for nitrate removal by denitrification
- usually along side of ditch or stream
- extensive literature and experience with sewage treatment
 - less for agricultural drainage waters
 - Kadlec, R.H. 2012. Constructed marshes for nitrate removal. Critical Reviews in Environmental Science and Technology 42:934-1005.

Tile wetland

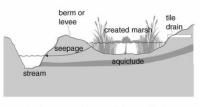
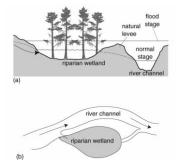
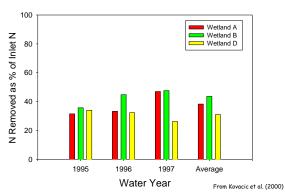



Fig. 5. Conceptual diagram of farm runoff wetland.

From Mitsch and Day (2006)

Riparian wetland

Inputs of water and N


- most tile flow in upper Midwest winter to spring
- Kovacic et al. (2000) water and N inputs
 - 30% winter
 - 65% spring
 - 5% summer & fall

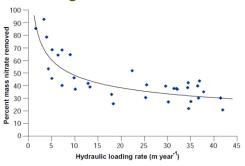
From Kovacic et al. (2000)

Illinois seasonal N removal (%)

Season	A	В	D Overall	
Fall	83	83	83-97	83-97
Winter	39-48	34-54	8-34	8-54
Spring	30-53	26-52	34-44	26-53
Summer	93-100	100	88-100	88-100

From Kovacic et al. (2000)

Illinois total N removal



What determines effectiveness?

- hydraulic loading
 - amount of water and nitrate
 - retention time
- nitrate concentration
- carbon
- temperature
- soils and vegetation
- microbial populations

Loading controls % removal

From Crumpton et al. (2008)

Retention time and temperature

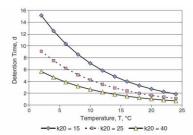
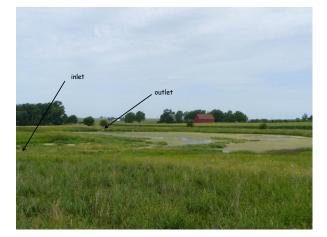


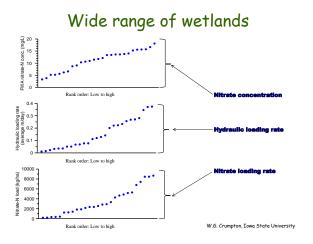
FIGURE 5. The effect of water temperature on the hydraulic loading, and corresponding detention time, required to accomplish 30% nitrate reduction. First-order NTIS areal model, with depth = 30 cm, N = 4 TIS, q = 1.1, and various k₂₀ (m/year) (Color figure available $\sim 10^{-1}$ online).

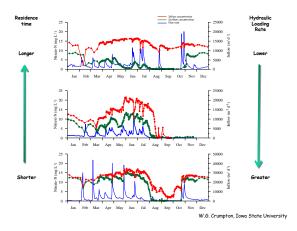
From Kadlec (2012)




- depth 0.34 to 0.78 m
- 1 to 13 yrs old

ratio of 0.34 to 5.3%


- tile inlets, plus surface runoff
- 44 to 93%
- rowcrop surrounded by
- buffers



W.G. Crumpton, Iowa State University

Retention time critical

W.G. Crumpton, Iowa State University

Denitrification rates

- · only directly measured in a few studies
 - Fleischer et al. (1994), Xue et al. (1999), Poe et al. (2003)
- both ¹⁵N and acetylene inhibition have given similar results
 - 0.02 to 11.8 mg N m $^{-2}$ h $^{-1}$ (average ~2)
 - equates to 100's of kg N ha-1 yr-1
 - temperature, nitrate, and C controlling factors

see O'Geen et al. (2010) for review

Major unknowns

- overall greenhouse gas emissions
- long-term performance
- optimum wetland to watershed area
- placement limitations
- large-scale acceptance
- costs

Limitations

- cost
- bottom line
- landscapes and land
 - can't put them everywhere
- flows
 - high winter/spring tile flow
- social barriers
 - many

Conclusions

- wetlands are effective at the end of tile lines, or when placed to intercept flow path of high nitrate water
- removal rates of nitrate variable
 - 20 to 90%
 - mass amounts of nitrate removed can be high
 - most likely lost as N_2 through denitrification
- many landscape, financial and social barriers
- manage water, retention time; denitrification will do the rest